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Nonlinear diff erential-diff erence equations, associated 
Backlund transformations and Lax technique 

M Bruschi and 0 Ragnisco 
Istituto di Fisica dell’universita, Roma, Italy and Istituto Nazionale di Fisica Nucleare, 
Sezione di Roma, Roma, Italy 

Received 23 October 1980 

Abstract. The authors show that the Lax technique can be successfully employed to derive 
the class of nonlinear differential-difference equations associated with the discrete analogue 
of the matrix Schrodinger spectral problem, and solvable by the spectral transform. 

1. Introduction 

In two previous papers (Bruschi and Ragnisco 1980a, b) we have shown that the Lax 
technique allows us to recover the whole class of nonlinear evolution equations (NEES) 

and Backlund transformations (BTS) associated with the matrix Schrodinger spectral 
problem (Wadati and Kamijo 1974), already derived by Calogero and Degasperis 
(1977) through the generalised Wronskian technique. In the present paper we prove 
that the equivalence between Lax and generalised Wronskian technique holds true also 
for the nonlinear diff erential-difference equations (NDDES), and the corresponding 
Backlund transformations associated with the discrete analogue of the matrix 
Schrodinger spectral problem (Bruschi et a1 1980,1981). In § 2 we derive, through the 
Lax technique, the class of NDDES, while in § 3 we deal, in the same framework, with 
BTS. All proofs are confined to § 4. 

2. NDDES and Lax technique 

Let us consider the eigenvalue problem 

Li,b(n, t ;  z )  = Ai,b(n, t ;  z )  (A = z +z-’)  

where, throughout this paper, 

L = E - + B ( n ,  t ) I + A ( n ,  t)E’, ( 2 )  

E* being the usual shift operators, E*i,b(n, t ;  2 )  = +(a f 1, t ;  z ) ,  and A(n, t ) ,  B(n,  t )  
being two N x N matrices, depending on the integer variable n and (parametrically) on 
the real variable t, obeying the asymptotic conditions 

lim A(n, t )  - I  = 0 ,  
ln1-m lnl+a 

lim B(n,  t )  = 0. (3) 

In formulae (2) and (3) I denotes, as usual, the identity operator. It can be shown 
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(Bruschi er al 1980) that, provided the ‘potentials’ A(n, t ) - - I  and B(n,  t )  decrease 
sufficiently fast as In 1 + a, the spectrum of L consists of two disjoint sets: the continuous 
spectrum, given by the unit circle in the z complex plane, and the discrete spectrum, 
given by a finite number of points all lying inside the unit circle. Analogously to the 
continuous case, it is possible to prove the following lemma. 

L e m m a  1. Let L be a spectral operator, and let there exist an operator M such that the 
commutator [L, MI takes the form 

[L, M ]  = Q ( n ,  t ) l  +P(n ,  t ) ~ + .  

L = [L, MI (4) 

Then (by a dot we denote t-derivative) 

defines a system of evolution equations for the ‘fjotentials’ A(n,  t ) ,  B (n ,  t )  such that (i) 
the spectrum of L does not change with t and (ii) the eigenfunction + evolves according 
to the formula 

4 ( n ,  f ;  2 )  = - ~ + h  t ;  z ) + + ( n ,  t ;  Z ) X ( Z ,  t ) ,  

the t-dependent N x N matrix ,y being determined by the asymptotic behaviour of +. 
To derive the class of evolution equations associated with the spectral problem (l) ,  

the crucial step is given by the following theorem. 

Theorem 1. Let there exist an operator M such that 

[L,  MI = Q ( n ,  t ) l  +P(n ,  [ )E+ 

where the N X N  matrices Q ( n ,  t ) ,  P(n ,  t )  depend of course in general upon the 
‘potentials‘. Define the new operator 

M ‘ = O M + M  ( 5 )  

where 

M = (n(n, t)P,(t)n-’(n + I ,  t ) ) ~ + t - P ~ ( t ) ~ ,  

PI, F2 being two n-independent matrices and n ( n ,  t )  being defined as 

and the operator 0 is defined by 

OM = LM + F,E+ +- F ~ I  

where 

= A(n, t ) S ( n  + 1, t ) (A(n  + 1, r ) ) - ’  
and 
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Then it follows that 

[L,  M'] = Q'(n ,  t ) I  + P ' ( n ,  t )E+,  

the 2N x N matrix [E:] being related to through the formula 

1077 

(8) 

Note that the operator 3 defined by ( l o a )  is just the operator L derived by Bruschi et a1 
(1981). 

Introducing now, in the space of N x N matrices, the basis { a v } v = 0 , . . . , ~ 2 - l ( a 0  = I )  
enables us to give the main result of this section, expressed by the next theorem. 

Theorem 2. Let the operator M be defined through the formula 

M =f1,~(0, t)n(n,t)a,n-'(n + 1, t)E++fz,v(O, t)aJ (11) 

wherefl,,,f2,+ are arbitrary entire functions of their first argument and the operator 0 is 
defined by (7). 

Then the Lax equation (5) implies that the 'potentials' evolve according to the 
system of NDDES 

B(n,  t )rI(n,  t)a,rII-'(n + 1, t ) - r I (n ,  t)a,n-'(n +1, t )B (n  +1, t )  

while the spectrum of L remains unchanged and the eigenfunction t,b satisfies the 
following evolution equation: 

4 ( n ,  t ;  2 )  = -Mt,b(n, t ;  z ) + J l ( n ,  t ;  z ) x ( z ,  t ) .  (12) 

From the previous theorem one can easily derive the following corollary. 
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Corollary 2.1. Let the eigenfunction q? evolve according to the equation (12) and be 
characterised by the asymptotic behaviour 

Note that the evolution of the reflection coefficient R ( z ,  t )  (13) is nothing but the one 
given by Bruschi et a1 (1981), any difference being merely notational. 

2. BTS and Lax technique 

To derive, by a proper generalisation of the Lax technique, the BTS related to the class of 
NDDES derived in the previous section, first of all we have to consider the two eigenvalue 
problems 

L+ = ( 2  +z-')+, 

L'q?' = ( 2  +z- ' )@' ,  

where L' is again defined by formula (2), once we replace the pair (A(n, t ) ,  B (n ,  t ) )  by 
the pair (A'(n, t ) ,  B'(n,  t ) ) ,  which also exhibits the asymptotic behaviour (3), so that the 
continuous spectra of L and L' are the same, being both given by the unit circle in the z 
complex plane. 

A preliminary step is accomplished via the following lemma. 

Lemma 2. Let H denote an operator and q an N x N t-dependent matrix. Then the 
operators L,  L ' ,  H are related by the formula 

(15) L'H - HL = 0 

if and only if the corresponding eigenfunctions satisfy the relation 

+'(P - Hq? = 0, (16) 

q being determined by the asymptotic behaviour of + and I,!/. 

The crucial point in our derivation is provided by the following theorem. 

Theorem 3. Let there exist an operator H such that 

L'H - HL = V(n ,  t)E+ + W(n,  t ) I ,  (17) 

where V, W are two N X N matrices depending of course on the pairs (A, B ) ,  (A',  B') ,  
Define the new operator 

(18) H '  = RH + r? 
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where 

R = ("n, t)G1(t)n-'(n + l , t ) ) E + +  G2(f)Z, 

R H  = L'H + GIE+ + G2Z 

Gl, c2 being two arbitrary N x N n-independent matrices and 

(19) 

where 

00 

GAn, t )  = - W ( i ,  t ) .  
I = n  

Then it follows that 

L'H' -H'L  = V'(n, t )E++ W'(n, t ) I ,  (7.0) 

V' ,  W' being again two N x N matrices related to V, W through the formula 

where / 

00 

~ ( n ,  t )  = ~ ( n ,  t )  (n'(j, t))- '  V ( j ,  t)n(j + I ,  t ) n - ' ( n  + I ,  t ) .  
j = n  

Note that the operator A is exactly the one introduced by Bruschi et nl (1981). 
Introducing now, as in the previous section, the basis { a u } v = ~ , . . . ~ N * - l  (a" = Z )  in the 

space of N x N matrices, we can give, by the following theorem, the main result of this 
section. 

Theorem 4 .  Let the operator H be defined through the formula 

H = g1,,(Q, t)(n '(n,  t)a,n-'(n + 1, t ) ) E + + g 2 , u ( n ,  t)aUz, (23) 

where g l . y ,  g2," are arbitrary entire functions of their first argument, and let cp be an 
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Corollary 4.1. If the 'potentials' (A, B ) ,  (A',  B')  satisfy equation (31) and the eigen- 
functions IC,, IC,' are characterised by the asymptotic behaviour 

(26) @ ( n ,  t ;  z ) (+ ' (n ,  t ;  2 ) )  "++a2 - 2-" + z " R ( z ,  t ) ( R ' ( z ,  t ) )  

which implies 

~ ( 2 ,  t )  = (Zg i , , (A ,  t )  + gz,,(A, f ) )Uv,  

then the following relationship holds between the reflection coefficients R, R ' :  

q ( z ,  t ) R ( z ,  t )  = R'(z ,  t ) q ( z - ' ,  t ) .  

Hence we have recovered the whole class of BTS for the NDDES derived by Bruschi el a1 
(1981). 

We end this section by the following remark. Assume that t is also a discrete 
variable, t = mh ( m  is a new integer variable); then any matrix function F ( n ,  t )  so far 
introduced can be considered as a function of two integer variables n, m : 

F(n,  t )  -+F(n ,  m ) .  

If we now define the primed quantities according to the prescription 

F'(n, t )  = F ( n ,  m + l), 

equation (3 1) provides a system of nonlinear difference-difference equations for the 
matrices A(n,  m ) ,  B(n ,  m ) ,  which can be also solved by the inverse spectral transform, 
using the asymptotic relationship 

p(z, m ) ~ ( z ,  m )  = ~ ( z ,  m + ~ ) q ( z - ' ,  m ) .  

The simplest equation of this class obtains when gl ,y ,  gz,+ do not depend on z ,  t and 
reads 

A(n,  m + 1)-A(n,  m )  = B(n,  m + l)n(n, m + l ) I ' - ' ( n  + 1, m )  

- n ( n ,  m + ~ ) n - ' ( n  + I ,  m ) B ( n  + I ,  m ) ,  

~ ( n ,  m + l ) - ~ ( n ,  m ) = n ( n - 1 , m + l ) n - ' ( n , m ) - n I ( n , m + l ) n - " n + 1 , m ) .  

3. Proofs 

Rather than giving detailed proofs, we will try to elucidate the points which are essential 
for the derivation of the previous lemmas, theorems and corollaries. 
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Proof of Lemma 1. The proof is closely analogous to that given by Bruschi and Ragnisco 
(1980a) for the continuous counterpart of this lemma. Differentiating equation (1) with 
respect to t, we obtain 

(27) 
where { = t,b +M+. As L( t )  is a one-parameter family of spectral operators, all having 
the same domain 9, we can express 6, which clearly belongs to 9, in terms of the 
complete set of generalised eigenfunctions {+(z ' )} .  Now, equation (27) implies that, in 
the expansion of {, only the term proportional to + ( z )  survives (otherwise the 
eigenfunctions will not be linearly independent). Hence the LHS of (27) is zero, and so 
must be the RHS, which implies A = 0. 

( L - h ) { ( n ,  t ;  z ) = A + ( n ,  t ;  z )  

Proof of Theorem 1. It follows by direct calculation of the commutator [L, M ' ]  once we 
have defined M' according to formulae (5)-(10). 

Proof of Theorem 2. It is a trivial consequence of lemma 1 and theorem 1. 

Proof of Corollary 2.1. It follows from theorem 2 after explicit evaluation of the 
asymptotic form of the evolution equation (12), once we have defined M according to 
(11). 

Proof of Lemma 2. To prove that (16) implies (15), one has merely to insert into (14b) 
the expression of +' in terms of + given by (16), using (14a) and taking advantage of the 
completeness of the set {+(z ' )} .  Conversely, applying (15) to a generic eigenfunction + 
and using (14a),  one immediately obtains (16). 

Proof of Theorem 3. It follows by direct calculation of the operator L'H' - H'L,  taking 
into account formulae (17)-(22). 

Proof of Theorem 4.  Due to lemma 2, formula (24) holds if and only if L'H - HL = 0. 
On the other hand, since now H is given by (23), taking advantage of the arbitrariness of 
the matrices cl, c2, it easily follows that L'H - HL is just the RHS of formula (25). 

Proof of Corollary 4.1. It follows by direct calculation of the asymptotic form of 
equation (24), H being given by (23). Of course, one has to take into account (26). 
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